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Crystals and diffraction 
 

 The scattering of small particles from periodic surfaces gives rise to diffraction, similar to 

the case in bulk crystals. The only difference is that now the periodicity exists only in the x-y 

plane of the surface, and not along the normal direction z.  Diffraction can be used to determine 

the structure of the surface, provided we know the interaction potential between the particle and 

the surface and we can solve the Schrödinger equation. In principle any particle will give rise to 

diffracted beams if the wavelength is comparable to the lattice parameter ~2-5 Å.   

  

The wavelength  is: 

 

For electrons, neutrons and atoms:  momentum p = h/   

 

 For photons:  c = , E = h    = hc/E 

 

Where c = speed of light, h = Planck constant,  = frequency.  To get wavelengths of ~2-5 Å 

the energies E should be around  

 

For electrons      > 40 eV  

Atoms, protons and neutrons   25 meV 

X-rays       2-6 keV 

 

To make the technique useful for structure determination the interaction should be sensitive 

to the surface.  That excludes neutrons and hard X-rays, since they penetrate deep into the 

sample and the surface represents only a small fraction of scatterers.  

There are special ways to use these more penetrating particles, for example using powder 

materials for neutrons, where the surface area is increased enormously. For X-rays one can resort 

to grazing angles <10º for 5 KeV photons and less than 1-2º for 100 KeV photons.   

The most popular technique for surface studies is Low Energy Electron Diffraction or 

LEED, which uses electrons of ~100 eV.  This has the advantage that the penetration depth of 

elastically scattered electrons into the sample is very small, one or two atomic layers and 

therefore surface sensitivity is assured.  Unfortunately these advantages make interpretation of 

diffracted intensities difficult, since the short mean free path, which is the key to its surface 

sensitivity, implies strong interaction, and therefore multiple scattering events.  Another 

technique is He atom scattering.  Helium at thermal energies does not penetrate the surface. In 

fact the atoms bounce off the surface at relatively large distances from the nuclei of the first layer 

of surface atoms.  

 

Crystal structures have been studied for many years by means of diffraction.  Diffraction is 

the phenomenon by which radiation (x-ray, electron, neutron, etc.) is deflected by the atoms and 

electrons constituting the crystal in specific directions.  It is the result of constructive and 

destructive interference of the scattered waves at the detector, far away from the crystal. 
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Photon and electron waves propagating in free space 

 

In free space the radiation propagates as plane waves, which can be represented by the 

wavefunction: 

Ψ(r,t) = ψo.e
i(k.r – ωt)

 

 

Where:  k.r – ωt = phase, ψo = maximum amplitude,  k = wave vector, ω =
 
angular frequency = 

2 

 

For electrons: (Å) = 12/E(eV).  Therefore for E = 100 eV,  = 1.2 Å 

 

For photons :  (Å) = 12.4/ E(KeV).  For E = 10,000 eV,  = 1.24 Å 

 

In all the following all vector quantities will be represented either by bold symbols of by a small 

arrow on top of the symbol. The same symbol in plain character is the modulus or length of the 

vector, for example: k =  k  = | k | 

 

The Davisson–Germer experiment  
 

It was a physics experiment conducted by American physicists Clinton Davisson and Lester 

Germer in 1927. 

 

 

 
 

Davisson and Germer's objective was to study the surface of a piece of nickel by directing a 

beam of electrons at the surface and observing how many electrons bounced off at various 

angles. To avoid collisions of the electrons with other molecules on their way towards the 

surface, the experiment was conducted in a vacuum chamber.  

During the experiment an accident occurred and air entered the chamber, producing an oxide 

film on the nickel surface. To remove the oxide, Davisson and Germer heated the specimen in a 

 

http://en.wikipedia.org/wiki/Experimental_physics
http://en.wikipedia.org/wiki/Clinton_Davisson
http://en.wikipedia.org/wiki/Lester_Germer
http://en.wikipedia.org/wiki/Lester_Germer
http://upload.wikimedia.org/wikipedia/commons/4/4e/Davisson-Germer_experiment.svg
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high temperature oven, not knowing that this affected the formerly polycrystalline structure of 

the nickel to form large single crystal areas with crystal planes continuous over the width of the 

electron beam.  

When they started the experiment again and the electrons hit the surface, they were scattered 

by atoms which originated from crystal planes inside the nickel crystal. As Max von Laue proved 

in 1912 the crystal structure serves as a three dimensional diffraction grating. 

 

 

Bravais lattice: 
 

A collection of periodically spaced points in 3 dimensional space.  Crystals can be thought 

of as a Bravais lattice with each point substituted by an atom, ion, molecule or groups of these.  

The 5 Bravais lattices in two dimensions are: 

 

 

 

  

http://en.wikipedia.org/wiki/Max_von_Laue
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Reciprocal lattice:  
 

A reciprocal lattice of a Bravais lattice is generated by all the wave vectors K of waves that 

have the same phase in each and every point of the Bravais lattice.  Example: 

 

This condition can be expressed as:  e
iK.R

 = 1, where R represents any vector of the Bravais 

lattice. 

 

A more mathematical definition of reciprocal space is as follows.  If a1, a2, a3 are the unit cell 

vectors of the Bravais lattice (sometimes called “direct space”), then the unit cell vectors of the 

reciprocal space, b1, b2, b3 are: 
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Notice that the denominator is simply the volume of the Bravais unit cell. 

It is clear that b1 is perpendicular to a2 and a3, etc. etc.  So that the following relations hold: 

 

b1 . a1 = 2;   b1 . a2 =  0;  b1 . a3 =  0 

b2 . a1 = 0;   b2 . a2 =  2;  b2 . a3 =  0 

b3 . a1 = 0;   b3 . a2 =  0;  b3 . a3 =  2 

 

These relations will be very useful when discussing diffraction. 

 

Exercises: 

1. Draw the reciprocal lattice of the square, rectangular and hexagonal lattices in two 

dimensions. 

2. What is the reciprocal lattice of a cubic bcc lattice ? 

3. Same of an fcc lattice. 

 

Figure 1.  2-Dimensional Bravais 

lattice with three waves of equal 

phase at all lattice points. The 

wavevector k of the top one (in 

red) is half that of the red one 

below it (but double wavelength).  

There is infinite number of waves 

that satisfy this condition 
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Miller Indices 

 

It is clear from figure 1 that each family of parallel planes through the lattice points defines 

vectors K of the reciprocal space that are perpendicular to those planes.  If d is the spacing 

between the nearest planes in the family it defines the longest wavelength.  The length of K is 

then = 2n/d, where n = 1,2,3,…   If K for n = 1 is expressed as a combination of the unit cell 

vectors b1, b2, b3:   K = hb1 + kb2 + lb3, then the indices h,k,l are called the Miller Indices of the 

family of planes.  Geometrically the indices can be found by considering the plane of the family 

that is closest to the origin.  If this plane intercepts the a1, a2, a3 axis at positions x1, x2 and x3 

then h:k:l = 1/x1: 1/x2 :1/x3 

 

Wigner Seitz cell:  is the volume in real space enclosed by planes perpendicular to the unit cell 

vectors through their mid-point.   

 

First Brillouin Zone: Same definition as the Wigner Seitz cell but in reciprocal space. 

 

Exercise: draw the two dimensional Wigner & Brillouin cells for the square, rectangular and 

hexagonal lattices.  

 

 

Bragg and Laue Diffraction conditions 

 

Bragg law: 

  In 1913 Bragg found that x-rays were diffracted by crystals, i.e., the emerging x-rays travel 

only in very specific directions.  He explained this by the interference of waves reflected from 

planes of atoms in the crystal.   For the reflected waves in consecutive planes to add in phase the 

difference in path length must be an integer of the wavelength: 

 

2d.sin = m 

 

So, for fixed values of d, , and , the condition cannot be fulfilled in general.  To obtain 

diffraction one must adjust  and /or .  Adjusting  leads to the method of the rotating crystal.  

Another way is to use powders of the crystal.  There will always be a collection of crystallites 

with the right value of .  The diffracted beams from these form a cone. Another possibility is to 

use “white” x-rays, i.e., x-rays that contain all wavelengths within a range.  There will be always 

Figure 2.  Illustration of the Bragg 

condition. Waves must reflect in 

phase from any pair of adjacent 

planes: therefore the difference in 

path length (red segments) must be 

a multiple of  
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one  corresponding to a wave that diffracts from planes separated by distance d at the angle .  

This is used to find the orientation of a crystal. 

 

Laue law: 

A more general proof of the diffraction condition is due to Laue who considered the 

scattered waves by any two points of the lattice (blue circles in the figure): 

 

The incident and scattered wavevectors are k and k’, and the unit length vectors in these two  

 

directions are n and n’.  

 

k = 2/. n    and k’ = 2/. n’ 

 

The vector d joins the two scattering centers.  As in the Bragg case, the two scattered waves must 

be in phase for constructive interference: 

 

n.d – n’.d = m   or (k-k’).d = 2m 

 

This relation must be valid for all pairs of lattice points, meaning that d is any Bravais lattice 

vector R. 

 

k. R = 2m, is equivalent to e
ik. R

 = 1.  We recognize this as the 

condition for k to be a vector of the reciprocal space.  We thus see the 

intimate correlation between reciprocal space and diffraction. 

 

If we designate by G a vector of the reciprocal space the condition k = G 

is equivalent to G/2 = k.sin 

 

Which by substituting G = 2/d and k = 2/ leads to 

the Bragg law. 

 

 

A very useful construction is the Ewald Sphere:  A 

sphere with center at the end of vector k passing 

through the origin will intercept all points of the 

reciprocal space capable of giving diffraction peaks.  In 

the drawing of the figure only one point is intercepted. 

Figure 3.  Illustration of the Laue 

condition. Waves must reflect in 

phase from any pair of lattice points: 

the difference in path length (red 

segments) must be a multiple of  

 

Origin 
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The scattering amplitude for particles interacting weakly with lattice atoms or electrons is: 

 

 
 




0 0

)'(')('.
)(.)(

j j

rkki

j

rikrrikrik

j

jjj efeeefA  

 

The first factor is the amplitude for scattering in the direction .  e
ikrj

 is the amplitude of the 

incident wave at the position rj. The second term is the wave scattered from that position: e
ik’(r-rj) 

 

The assumption or weak scattering is because we neglect any other amplitude at the position 

rj except the incident one. The other amplitudes, coming from scattered waves from the other 

positions are neglected assuming they are much weaker than the incident one.  This is also called 

the kinematic approximation. For x-rays and high energy electrons this is a good approximation.  

For the low energy electrons used in LEED the approximation gives poor quantitative results.  

Even in that case however, the predictions of the kinematic approximation that are purely related 

to symmetry are still valid.  For example if a given diffraction direction is forbidden, then the 

kinematic approximation would predict zero amplitude in that direction, which is correct.  We 

will see examples of this below. 

 

Structure factor: 

 

Until now we have only considered scattering by lattice points.  In general however the unit 

cell contains more than one atom, or, for x-rays, the electron distribution should be considered.  

The sum of scattered amplitudes from each scattering center inside the unit cell gives the 

structure factor S(k): 
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where rj is the position of the scattering center and fj(k) is 

the scattering function which depends of the type of atom 

and scattering angle.  The structure factor is an additional 

condition over the Laue condition and can result in the 

suppression of certain diffracted beams that otherwise 

satisfy the Lauer condition.  For example, using the non-

primitive cubic cell of a bcc crystal like W, the cell contains 

two identical atoms, one at the origin (0,0,0), the other at 

(1/2, 1/2, 1/2). 

 

Shkl = f().[1 + e
i(h+k+l)

]   where k = hb1 + kb2 + lb3 

 

As we can see for Shkl to be non-zero h+k+l must be even, 

which excludes the reflections (111), (210), etc. 

 

 

Exercise:  Find the structure factor conditions for:  (a) an (a) an fcc crystal; (b) a cubic diamond 

structure 
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Atomic form factor due to the electron density distribution: 

 

In the previous paragraphs we have assumed the scattering centers to be the points of the 

lattice, or the group of point-like atoms forming the basis and giving rise to the structure factor.  

X-rays however are scattered by each individual electron.  We take care of this by a similar 

procedure as in the structure factor by summing the scattered amplitudes, except that the electron 

distribution is a continuous function n(r) : 
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nj(r) is the electron density function. 

 

Exercise: calculate fj  for a uniform spherical distribution of charge. 

 

 

Diffraction from surfaces 
 

Ewald construction   
 

Like in the 3-dimensional case discussed above, the directions of the diffracted beams can 

be found easily with the help of the Ewald construction. The reciprocal lattice of points is drawn 

on the plane of the crystal surface. Then vertical lines are drawn perpendicular to the surface. A 

sphere is drawn with center at the extreme of a vector k (the incident wavevector) whose other 

end is at the origin of the 2-D reciprocal 

space.  The intersection of the sphere 

with the vertical lines through the 

reciprocal lattice points marks the end of 

the wavevectors of the diffracted beams.   

 

In the projected representation, the 

center of the Ewald circle is drawn at the 

position of the K vector (the surface 

projection of the incident wavevector), 

with a radius of k, the modulus of the 

incident wavevector.  All reciprocal 

lattice points inside the circle correspond 

to diffracted beams and those outside to 

evanescent beams.   
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General formalism: Bloch theorem in 2 dimensional structures 

 

The Bloch theorem, which is a consequence of the translational symmetry of the surface, 

implies that the interaction potential V(r) and the particle wavefunction (r) can be written as 

sums over the reciprocal lattice: 
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We have written r = (z, R), where the z coordinate is separated from the x,y coordinates, 

represented by the vector R.  The G’s are the 2-dimensional reciprocal lattice vectors and KG = 

K+G, which expresses the conservation of crystal momentum parallel to the surface.  In the 

following we will always use capital letters for surface magnitudes (K for momentum, R for the 

spatial coordinate), and small letters with a sub-z for their normal components.   

 

The schematic drawing illustrates the geometry of the diffracted beams and the vector 

magnitudes associated.  The beams are classified as follows: 

 

(1) G = 0. This contains the incident and specularly reflected beams. The asymptotic form of the 

wave function corresponds to two plane waves: 
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the first one is for the incident beam, the second for the reflected beam.  The value of the 

amplitude Ro must be found by solving the Schrödinger equation. 

 

(2) Real diffracted beams. Here G  0, and the following condition is fulfilled: 
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The asymptotic form of the wavefunction is: 
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Again the RG’s are to be found by solving the Schrödinger equation. There is a finite number of 

real diffracted beams. 

 

(3) Evanescent beams. Again G  0, but now 
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For these beams, the wavefunction is exponentially decaying: 
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There is only amplitude near the surface. The particles move parallel to the surface until they are 

scattered back into one of the real beams, by exchanging a G vector with the lattice. 

 

The dashed circle in the Ewald construction shown above corresponds to resonances with 

bound states of the attractive well V0(z). Its radius is equal to (k
2
+kn

2
)
1/2

, where -kn
2
 is the energy 

of a bound state.  When an evanescent beam fulfills the condition:  
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a resonance occurs called Lennard-Jones resonance.  In that case the particle can be trapped on 

the surface for a much longer time before being scattered back into a real beam.  Such resonance 

effects can be important in chemisorption. 


